

Fixation dans les maçonneries pleines et creuses

EVALUATION TECHNIQUE EUROPÉENNE

ETE - 18/0137

RÉSINE POLYESTER 300 ml SOC (BEIGE)

I.N.G. Fixations - ZI de Chassende BP 90168 43005 Le Puy en Velay cedex France Tél: +33 (0)4 71 05 59 03 - Fax: +33 (0)4 71 09 35 46 - ing@ingfixations.fr - www.ingfixations.fr

ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet www.etadanmark.dk Authorised and notified according to Article 29 of the Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011

European Technical Assessment ETA-18/0137 of 2018-03-20

I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S

Trade name of the construction product:	RESINE SOC
Product family to which the above construction product belongs:	Bonded anchor with anchor rod made of galvanized steel or stainless steel of sizes M8, M10 and M12, for use in masonry
Manufacturer:	ING Fixations Z.I. de Chassende, BP 90168, 43005 LE-PUY-EN-VELAY Cedex Tel. (33) (0)4 71 05 59 03 Fax (33) (0)4 71 09 35 46 Internet: <u>www.ingfixations.fr</u>
Manufacturing plant:	Factory Plant 1
This European Technical Assessment contains:	25 pages including 20 annexes which form an integral part of the document
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of: This version replaces:	EAD 330076-00-0604 Metal injection anchors for use in masonry

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (except the confidential Annexes referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product and intended use

Technical description of the product

The Injection system RESINE SOC is a bonded anchor (injection type) consisting of a mortar cartridge with RESINE SOC injection mortar PE, a perforated nylon sleeve, and an anchor rod with hexagon nut and washer in the range of M8, M10 and M12.

The steel elements are made of zinc coated steel or stainless steel.

The anchor rod is placed into a drilled hole filled with injection mortar and is anchored via the bond between steel element, injection mortar and masonry.

An illustration of the product and intended use is given in Annex A1 and Annex A3.

The characteristic material values, dimensions and tolerances of the anchors not indicated in Annexes shall correspond to the respective values laid down in the technical documentation¹ of this European Technical Assessment.

The anchors are intended to be used with embedment depth given in Annex A4, Table A1. For the installed anchor see Figure given in Annex A3. The intended use specifications of the product are detailed in the Annex B1.

2 Specification of the intended use in accordance with the applicable EAD

The anchors are intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Basic Works Requirements 1 and 4 of Regulation (EU) 305/2011 shall be fulfilled and failure of anchorages made with these products would compromise the stability of the works, cause risk to human life and/or lead to considerable economic consequences.

The anchor is to be used only for anchorages subject to static or quasi-static loading in solid masonry (Masonry Group b) or hollow or perforated masonry (Masonry Group c) according to Annex B9. The mortar strength class of the masonry has to be M 2,5 according to EN 998-2:2010 at minimum.

The anchors may be installed in Condition w/d: installation in wet substrate and use in structures subjected to dry, internal conditions.

The anchors may be used in the following temperature range:

Ta: -40° C to $+40^{\circ}$ C (max. short term temperature $+40^{\circ}$ C and max. long term temperature $+24^{\circ}$ C),

Tb: -40° C to $+80^{\circ}$ C (max short term temperature + 80 °C and max long term temperature + 50 °C).

Elements made of galvanized steel or stainless steel may be used in structures subject to dry internal conditions only.

The provisions made in this European Technical Assessment are based on an assumed intended working life of the anchor of 50 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

¹ The technical documentation of this European Technical Assessment is deposited at ETA-Danmark and, as far as relevant for

the tasks of the Notified bodies involved in the attestation of conformity procedure, is handed over to the notified bodies.

3 Performance of the product and references to the methods used for its assessment

3.1 Characteristics of product

Mechanical resistance and stability (BWR 1):

The essential characteristics are detailed in the Annex from C1 to C5.

Safety in case of fire (BWR 2):

The essential characteristics are detailed in the Annex from C4.

Safety in use (BWR4):

For basic requirement Safety in use the same criteria are valid for Basic Requirement Mechanical resistance and stability (BWR1).

Sustainable use of natural resources (BWR7)

No performance determined

Other Basic Works Requirements are not relevant

3.2 Methods of assessment

The assessment of fitness of the anchor for the intended use in relation to the requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 has been made in accordance with the EAD 330076-00-0604 Metal injection anchors for use in masonry, based on the Use Categories b and c in respect of the base material and Category w/d in respect of installation and use.

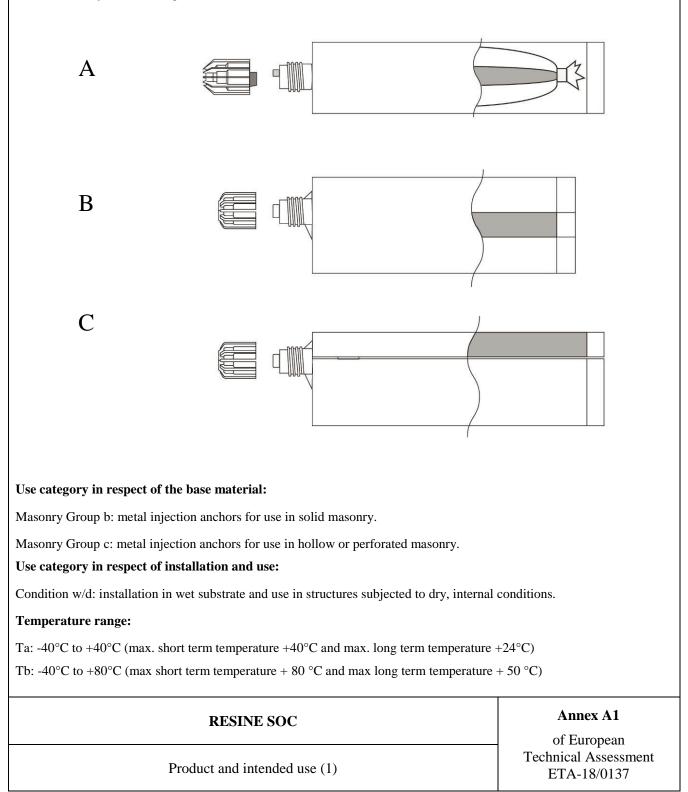
In addition to the specific clauses relating to dangerous substances contained in this European Technical Assessment, there may be other requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Regulation, these requirements need also to be complied with, when and where they apply.

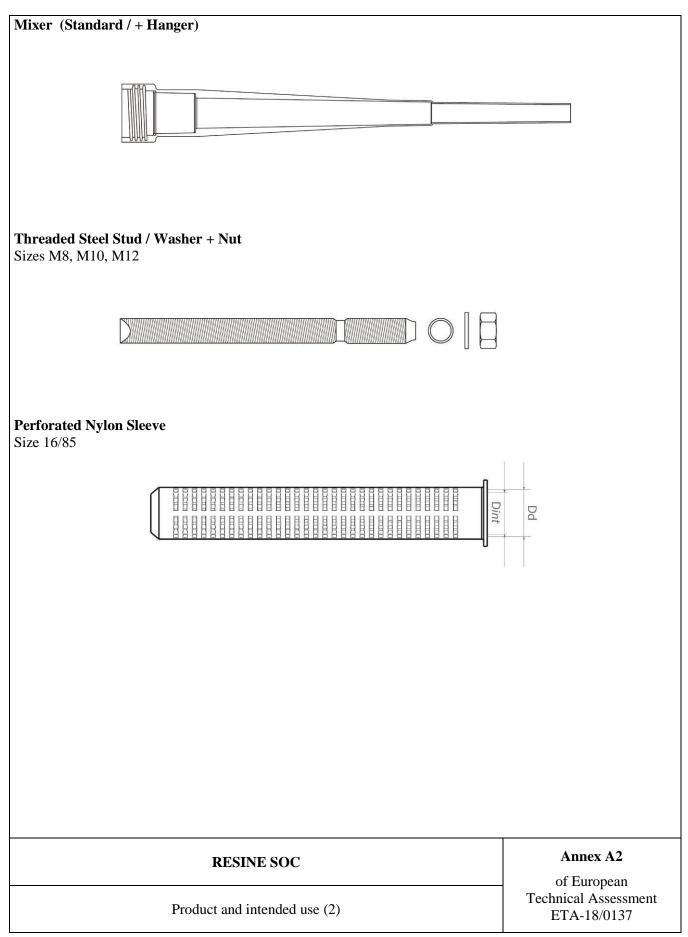
4 Attestation and verification of constancy of performance (AVCP)

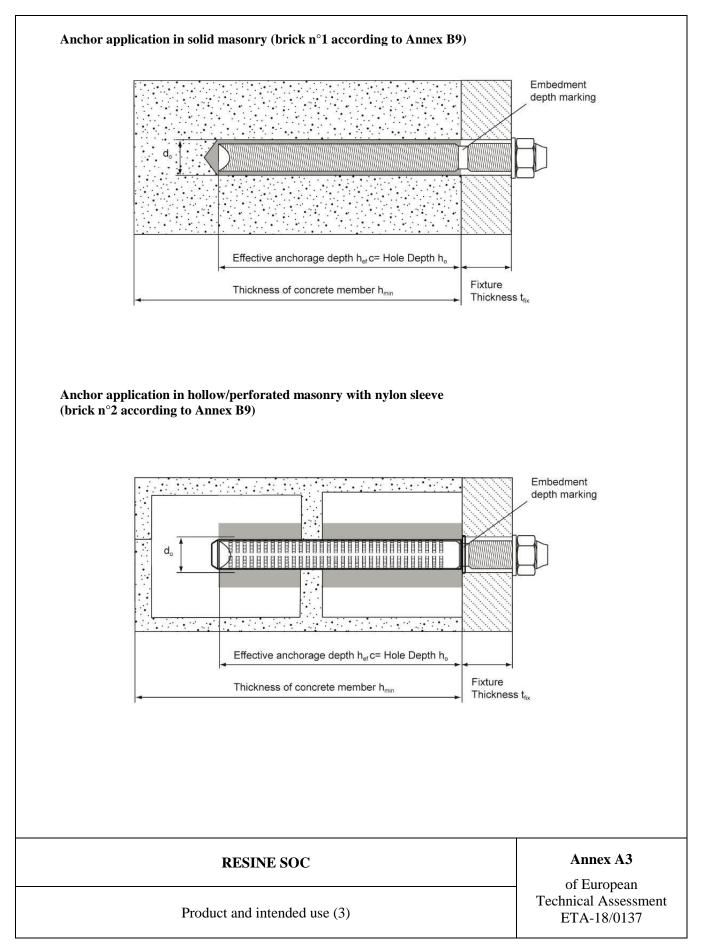
4.1 AVCP system

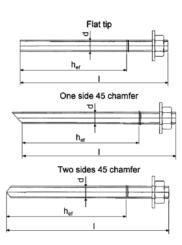
According to the decision 1997/177/EC of the European Commission, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 1.

5 Technical details necessary for the implementation of the AVCP system, as foreseen in the applicable EAD


Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark prior to CE marking


Issued in Copenhagen on 2018-03-20 by


Thomas Bruun Manager, ETA-Danmark



- A) Foil Bag Cartridge 165ml, 300ml
- B) Coaxial Cartridge 380ml, 400ml, 410ml
- C) Side by Side Cartridge 345ml, 825ml

Table A1: Threaded rod dimensions

Anchor size			M8	M10	M12
Diameter of anchor rod	d	[mm] =	8	10	12
Size of sleeve	$d_{nom} \ge l_s$	[mm] =		16 x 85	
Nominal anchorage depth	\mathbf{h}_{ef}	[mm] =		85	
Maximum diameter hole in fixture	$d_{\rm fix}$	$[mm] \leq$	9	12	14
Installation torque moment	T _{inst}	[Nm] =	2	2	2
Depth of drilled hole to deepest point	h_1	[mm] =		90	

1) Marking according EAD 330076-00-0604 Metal injection anchors for use in masonry.

2) Effective anchorage depths according to the range specified in table 1.

Table A2: Threaded rods materials

Designation	Material			
Threaded rods made of zinc coated steel				
Threaded rod M8 – M12	Strength class 4.6, 5.8, 6.8 EN ISO 898-1 Steel galvanized \geq 5µm EN ISO 4042 Hot dipped galvanized \geq 45µm EN ISO 10684			
Washer ISO 7089	Steel galvanized EN ISO 4042; hot dipped galvanized EN ISO 10684			
Nut EN ISO 4032	Strength class 8 EN ISO 898-2 Steel galvanized $\ge 5\mu m$ EN ISO 4042 Hot dipped galvanized $\ge 45\mu m$ EN ISO 10684			
Threaded rods made of st	tainless steel			
Threaded rod M8 – M12	Strength class A4-70 and A4-80 EN ISO 3506-1;			
Washer ISO 7089	Strength class A4-70 and A4-80 EN ISO 3506-1;			
Nut EN ISO 4032	Strength class A4-70 and A4-80 EN ISO 3506-1;			

Commercial standard threaded rods with:

- material and mechanical properties according to Table 2;

- confirmation of material and mechanical properties by inspection certificate 3.1 according to EN-10204:2004;

- marking of the threaded rod with the embedment depth.

RESINE SOC	Annex A4 of European	
Threaded rod types, dimensions and materials	Technical Assessment ETA-18/0137	

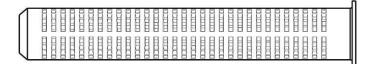
 Table A3: Injection mortar

Product	Composition
RESINE SOC Two components injection mortar	Additive: quartz Bonding agent: polyester resin Hardener: dibenzoyl peroxide

Table A4: Minimum curing time

Temperature in the concrete member	Minimum gelling time in dry concrete (mins)	Minimum load time in dry concrete (mins)
≥ - 5°C	40	180
$\geq +5^{\circ}C$	20	90
$\geq +15^{\circ}C$	9	60
$\geq +25^{\circ}C$	5	30
≥+35°C	3	20

RESINE SOC


Annex A5

Materials and curing time

of European Technical Assessment ETA-18/0137

Plastic sleeve for hollow/perforated masonry: nominal dimensions and material

Resin sleeves are the effective way to create a fixing where there is a hollow void, such as for perforated bricks and blocks, or a more porous material for example blockwork. Resin is injected to fill the volume of the sleeve, and then forced through the fine perforations once the metal fixing rod is inserted. This distributes the resin material into the fixing cavity, forming a solid joint between the resin, the sleeve and the fixing.

Nylon Perforated Sleeve – 16 x 85

Nominal Diameter 16 mm

Nominal Length 85 mm

RESINE SOC

Annex A6 of European Technical Assessment ETA-18/0137

Plastic sleeve

Use:

The anchors are intended to be used for anchorages for which requirements for mechanical resistance and stability and safety in use in the sense of the Basic Requirements 1 and 4 of Regulation 305/2011 (EU) shall be fulfilled and failure of anchorages made with these products would compromise the stability of the works, cause risk to human life and/or lead to considerable economic consequences.

Anchors subject to:

Static and quasi-static loads: sizes from M8 to M12.

Base materials:

Solid masonry (Masonry Group b) or hollow or perforated masonry (Masonry Group c) according to Annex B9. The mortar strength class of the masonry has to be M 2,5 according to EN 998-2:2010 at minimum.

Temperature range:

The anchors may be used in the following temperature range: Ta: -40°C to +40°C (max. short term temperature +40°C and max. long term temperature +24°C), Tb: -40°C to +80°C (max short term temperature + 80 °C and max long term temperature + 50 °C).

Use conditions (Environmental conditions):

Threaded rods:

a) Carbon galvanized steel class 4.6, 5.8 or 6.8 according to EN ISO 898-1 for dry internal conditions.b) Stainless steel A4-70 and A4-80 according to EN ISO 3506 for dry internal conditions.

Nuts and washers:

Corresponding to anchor rod material above mentioned for the different environmental exposures.

Installation:

- Condition w/d: installation in wet substrate and use in structures subjected to dry, internal conditions.
- Perforation with drilling machine

Proposed design methods:

- EOTA Technical Report 054, Design method A

RESINE SOC

Annex B1

Intended use - Specification

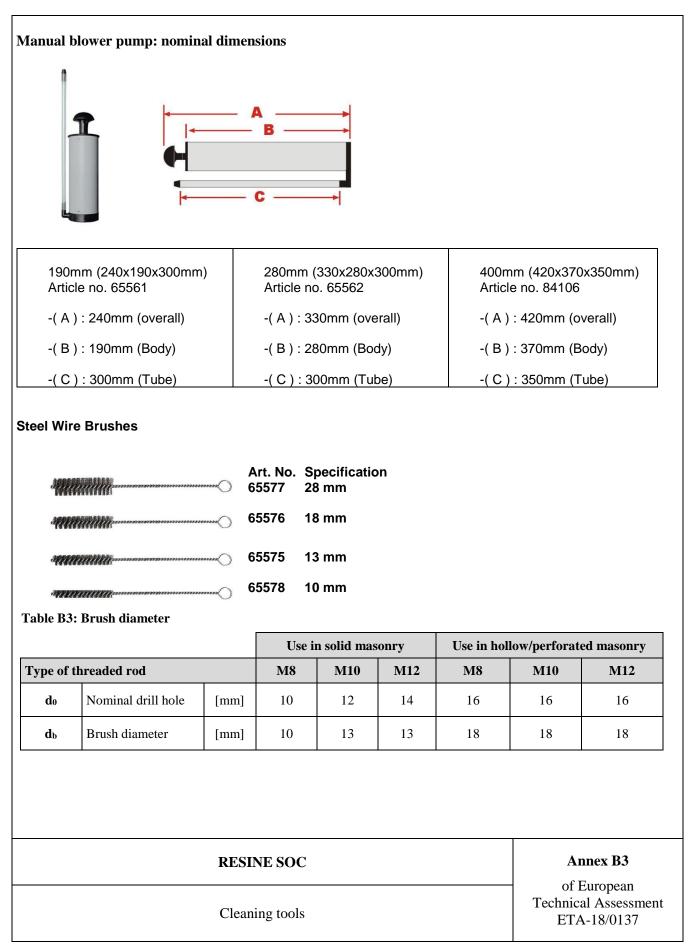
of European Technical Assessment ETA-18/0137

Table B1 Installation data for solid masonry (brick n°1)*				
Size		M8	M10	M12
Nominal drilling diameter	d ₀ [mm]	10	12	14
Maximum diameter hole in the fixture	d _{fix} [mm]	9	12	14
Embedment depth	h _{ef} [mm]	85	85	85
Depth of the drilling hole	h ₁ [mm]	$h_{\rm ef} + 5 {\rm mm}$		
Torque moment	Tinst [Nm]	2	2	2
Thickness to be	t _{fix,min} [mm]	> 0		
fixed	t _{fix,max} [mm]	< 1500		
Minimum spacing	S _{min} [mm]	255	255	255
Minimum edge distance	C _{min} [mm]	127,5	127,5	127,5

* Type of bricks are detailed in the Annex B9

Table B2: Installation data for hollow/perforated masonry (brick n° 2)*

Size		M8	M10	M12
Plastic sleeve			16x85	
Nominal drilling diameter	d ₀ [mm]	16	16	16
Maximum diameter hole in the fixture	d _{fix} [mm]	9	12	14
Embedment depth	h _{ef} [mm]	85	85	85
Depth of the drilling hole	h1 [mm]	$h_{ef} + 5 mm$		
Torque moment	T _{inst} [Nm]	2	2	2
Thickness to be	t _{fix,min} [mm]		> 0	
fixed	t _{fix,max} [mm]		< 1500	
Minimum analis	S _{min,} ∦ [mm]	560	560	560
Minimum spacing	S _{min,} ⊥[mm]	200	200	200
Minimum edge distance	C _{min} [mm]	100	100	100


* Type of bricks are detailed in the Annex B9

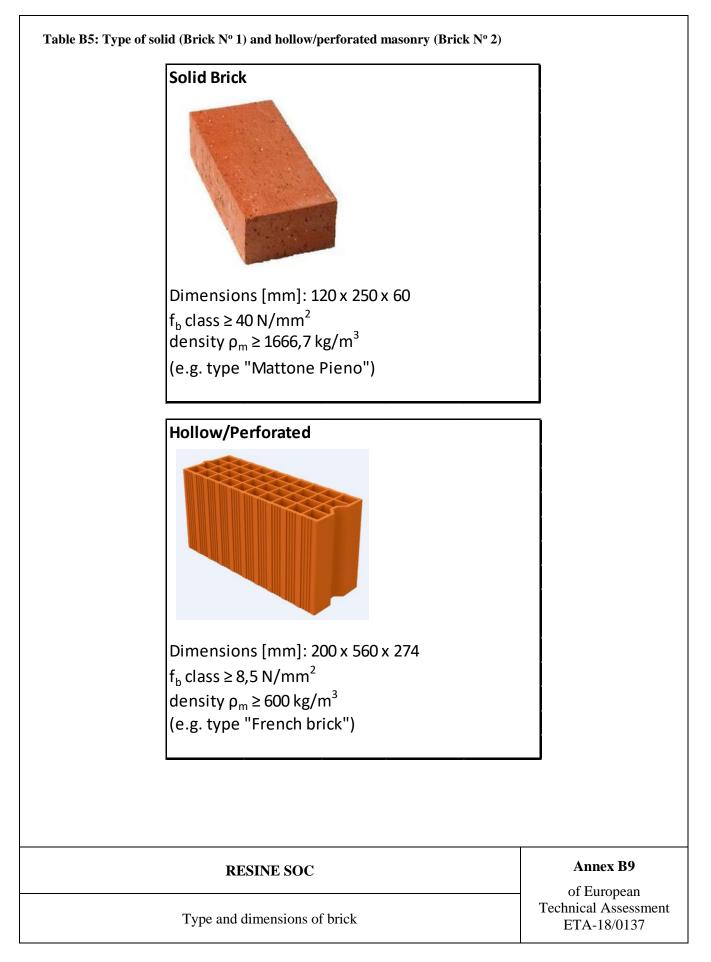
RESINE SOC

Annex B2

of European Technical Assessment ETA-18/0137

Intended use - data

	Posin injection nump details	
Image	Resin injection pump details Size Cartridge / Code	Туре
	165 / 300ml Art 65463 - 300 ml 10:1	Manual
	345ml Art 65472 - 345 ml 10:1	Manual
	380 / 410ml Art 65464 - 380/410 ml 10:1	Manual
	165 / 300 / 345 / 380 / 410ml Art 66399 300 ml 7.4v Tool Art 65486 345 ml 7.4v Tool Art 65484 380 ml 7.4v Tool	Battery
RES	SINE SOC	Annex B4 of European
Tools	for injection	Technical Assessment ETA-18/0137


Instructions for use	Instructions for use				
Bore hole drilling					
	Drill hole to the required embedment depth with a hamm mode using an appropriately sized carbide drill bit.	er drill set in rotation-hammer			
Bore hole cleaning Just bef	ore setting an anchor, the bore hole must be free of dust and debris	•			
a) Manual air cleaning (MA	C)				
X 4		The manual pump may be used for blowing out bore holes Blow out at least 4 times from the back of the bore hole until return air stream is free of noticeable dust.			
× • • 0 X 4	steel brush to the back of the hole (if needed with an exter removing it. The brush must produce natural resistance as	Brush 4 times with the specified brush size (brush $\emptyset \ge$ bore hole \emptyset , see Table) by inserting the steel brush to the back of the hole (if needed with an extension) in a twisting motion and removing it. The brush must produce natural resistance as it enters the bore hole. If not, the brush is too small and must be replaced with the proper brush diameter.			
X 4	Blow out again with manual pump at least 4 times until re noticeable dust.	Blow out again with manual pump at least 4 times until return air stream is free from noticeable dust.			
b) Compressed air cleaning (CAC)					
Bar X 2		Blow 2 times from the back of the hole (if needed with a nozzle extension) over the hole length with oil-free compressed air (min. 6 bar at 6m ³ /h) until return air stream is free from noticeable dust.			
× • 0 X 2	the steel brush to the back of the hole (if needed with an e removing it. The brush must produce natural resistance as	Brush 2 times with the specified brush size (brush $\emptyset \ge$ bore hole \emptyset , see Table) by inserting the steel brush to the back of the hole (if needed with an extension) in a twisting motion and removing it. The brush must produce natural resistance as it enters the bore hole. If not, the brush is too small and must be replaced with the proper brush diameter.			
BBAY X 2	Blow out again with compressed air at least 2 times until 1 noticeable dust.	Blow out again with compressed air at least 2 times until return air stream is free from noticeable dust.			
	RESINE SOC	Annex B5			
Pi	ocedure for solid masonry (1)	of European Technical Assessment ETA-18/0137			

Instructions for use				
	Remove the threaded cap from the cartridge. Cut the b	pag below the clip if appropriate.		
	Tightly attach the mixing nozzle. Do not modify the mi element is inside the mixer. Use only the supplied mix	ixer in any way. Made sure the mixing er with the adhesive.		
	Insert the cartridge into the dispenser. Press the releas insert the cartridge neatly into the cradle without any o	se trigger to retract the plunger and distortion.		
X	Discard the initial trigger pulls 10cm of adhesive. Residispensing is initiated.	n will flow from the cartridge as soon as		
Instructions for use				
75%	Insert the nozzle to the bottom of the hole and injec	ct the resin until the hole is filled 75%		
0	Insert the anchor, slowly with a slight twisting motion into the hole. Remove excess resin and leave the fixing until minimum curing (loading) times has elapsed			
	RESINE SOC	Annex B6		
Pro	redure for solid masonry (2)	of European Technical Assessment ETA-18/0137		

Instructions for use			
Bore hole drilling			
	Drill hole to the required embedment depth with a hammer d mode using an appropriately sized carbide drill bit.	rill set in rotation-hammer	
Bore hole cleaning Just before set	ting an anchor, the bore hole must be free of dust and debris.		
a) Manual air cleaning (MAC)			
X4	The manual pump may be used for blowing out bore holes Blow out at least 4 times from the back of the bore hole until r noticeable dust.	eturn air stream is free of	
× • • • • • • • • • • • • • • • • • • •	Brush 4 times with the specified brush size (brush $\emptyset \ge$ bore hole \emptyset , see Table) by inserting the steel brush to the back of the hole (if needed with an extension) in a twisting motion and removing it. The brush must produce natural resistance as it enters the bore hole. If not, the brush is too small and must be replaced with the proper brush diameter.		
X 4	Blow out again with manual pump at least 4 times until return air stream is free from noticeable dust.		
b) Compressed air cleaning (CAC			
6 Bar → X 2	Blow 2 times from the back of the hole (if needed with a nozzle length with oil-free compressed air (min. 6 bar at 6m ³ /h) untinoticeable dust.	e extension) over the hole il return air stream is free from	
X 2	Brush 2 times with the specified brush size (brush $\emptyset \ge$ bore hole \emptyset , see Table) by inserting the steel brush to the back of the hole (if needed with an extension) in a twisting motion and removing it. The brush must produce natural resistance as it enters the bore hole. If not, the brush is too small and must be replaced with the proper brush diameter.		
Bar X 2	Blow out again with compressed air at least 2 times until return air stream is free from noticeable dust.		
	RESINE SOC	Annex B7	
Procedure for hollow/perforated masonry (1) of European ETA-18/0137			

Instructions for use	
	Remove the threaded cap from the cartridge without cutting.
* · ·	Tightly attach the mixing nozzle. Do not modify the mixer in any way. Made sure the mixing element is inside the mixer. Use only the supplied mixer with the adhesive.
	Insert the cartridge into the dispenser. Press the release trigger to retract the plunger and insert the cartridge neatly into the cradle without any distortion.
×	Discard the initial trigger pulls 10cm of adhesive. Resin will flow from the cartridge as soon as dispensing is initiated.

Instructions for use				
	Introduce the sleeve of suitable dimension (see table) to collar is level with the hole face. The cap may be opened			
100%	Insert the nozzle to the end of the sleeve and inject the resin until the sleeve is 100% filled. Close the cap.			
	Insert the anchor, slowly with a slight twisting motion i and leave the fixing until minimum curing (loading) tim	Insert the anchor, slowly with a slight twisting motion into the sleeve. Remove excess resin and leave the fixing until minimum curing (loading) times has elapsed		
RESINE SOC		Annex B8		
Procedure for hollow/perforated masonry (2)		of European Technical Assessment ETA-18/0137		

ESSENTIAL CHARAC	TERISTICS	PERFORMANCE			
Installation parameters		M8	M10	M12	
d [mm]		8	10	12	
d ₀ [mm] category b (solid		10	12	14	
	ow or perforated masonry)	16	16	16	
Type of plastic sleeve for	use in category c	16x85	16x85	16x85	
d _{fix} [mm]		9	12	14	
n1 [mm]			$h_{ef} + 5 mm$		
	Min		> 0		
t _{fix} [mm] Max		≤ 1500 mm			
Tinst [Nm] category b (sol		2	2	2	
Tinst [Nm] category c (ho	llow or perforated	2	2	2	
masonry)					
Smin [mm] category b (so		255	255	255	
Cmin [mm] category b (so	lid masonry)	127,5	127,5	127,5	
S_{min} [mm] category c (ho	llow masonry) S _{min,}	560	560	560	
S _{min} [mm] category c (ho	llow) S _{min,} ⊥	200	200	200	
Cmin [mm] category c (ho	llow masonry)	100	100	100	
Resistance for tensile Cemperature range -40	and shear load $^{\circ}C/+40^{\circ}C (T_{mlp} = 24^{\circ}C)$	M8	M10	M12	
D	N _{Rk} [kN]	2,5			
Brick n°1 (solid)	V _{Rk} [kN]	6,0			
Dui -1 90 (111)	N _{Rk} [kN]	0,75			
Brick n°2 (hollow)	V _{Rk} [kN]		3,5		
* Resistance for tensile					
Femperature range -40	$^{\circ}C$ to +80 $^{\circ}C$ (T _{mlp} =	M8	M10	M12	
50°C)					
Brick n°1 (solid)	N _{Rk} [kN]	2,0			
blick if I (solid)	V _{Rk} [kN]		6,0		
Brick n°2 (hollow)	N _{Rk} [kN]		0,6		
Brick n°2 (nollow) V _{Rk} [kN]			3.5		

* For design according to EOTA Technical Report 054: $N_{Rk} = N_{Rk,p} = N_{Rk,p} = N_{Rk,pb} - \text{steel failure is not decisive}$ * For design according to EOTA Technical Report 054: $V_{Rk} = V_{Rk,b} - \text{steel failure without lever arm is not decisive} - V_{Rk,c}$ according to EOTA Technical Report 054

RESINE SOC

Performance for static and quasi-static loads: Resistances

Annex C1 of European Technical Assessment ETA-18/0137

Table C2: Characteristic bending moments					
Size			M8	M10	M12
Characteristic resistance with standard threaded rod grade 4.6	M _{Rk,s}	[Nm]	15	30	52
Partial safety factor	γ _{Ms}	[-]		1,67	
Characteristic resistance with standard threaded rod grade 5.8	M _{Rk,s}	[Nm]	19	37	66
Partial safety factor	γ _{Ms}	[-]	1,25		
Characteristic resistance with standard threaded rod grade 6.8	M _{Rk,s}	[Nm]	22	45	79
Partial safety factor	γ_{Ms}	[-]	1,25		
Characteristic resistance with standard threaded rod stainless steel A4-70 (class 70)	M _{Rk,s}	[Nm]	26	52	92
Partial safety factor	γ _{Ms}	[-]	1,56		
Characteristic resistance with standard threaded rod stainless steel A4-80 (class 80)	M _{Rk,s}	[Nm]	30	60	105
Partial safety factor	γ _{Ms}	[-]		1,33	

RESINE SOC

Performance for static and quasi-static loads: Resistances

Annex C2 of European Technical Assessment ETA-18/0137

	ESSENTIAL CHARACTERISTICS		PERFORMANCE			
* Resistance for tensile an Temperature range -40°C -40°C to +80°C (T _{mlp} = 50	C/+40°C (T _{mlp} =	= 24°C) and	M8	M10	M12	
γ _{Mm} [-] Category w/d	,			2,50		
Brick n°1	S _{cr,N} [mm]		255	255	255	
DIICK II I	C _{cr,N} [mm]		127,5	127,5	127,5	
	$S_{cr,N,\parallel}$ [mm]		560	560	560	
	$S_{cr,N} \perp [mm]$		200	200	200	
	$C_{cr,N}$ [mm]		100	100	100	
β coefficient for in situ test (EOTA 053)		M8	M10	M12		
Temperature range: -40°	°C/+40°C	0.5.1				
Brick Nº 1 - Solid brick		β[-]		0,57		
Brick N ^o 2 - French Brick β coefficient for in situ tes	et (EOTA TD 4	β[-]		0,60		
Temperature range: -40°		55)	M8	M10	M12	
Brick Nº 1 - Solid brick		β[-]		0,45	1	
Brick Nº 2 - French Brick		β[-]		0,45		
Displacement under servi Tensile load Temperature range -40°C		= 24°C)				
Brick n°1 – Solid brick			M8	M10	M12	
Admissible service load in				0,71		
Displacement		[mm]		0,02		
Displacement	$\delta_{N^{\infty}}$	[mm]		0,05	1	
Brick n°2 – Hollow/perfo			M8 With sleeve	M10 With sleeve	M12 With sleeve	
Admissible service load in		-	0,21			
Displacement	δ _{N0}	mm]	0,03			
Displacement	δ _{N∞}	[mm]		0.05		
Displacement under servi Tensile load Temperature range -40°C Brick n°1 – Solid brick		$h_p = 50^{\circ}C)$	M8	M10	M12	
Admissible service load in	tensile F [k	N]		0,57		
		[mm]		0,03		
Displacement		[mm]	0,06			
		L*J	M8	M10	M12	
Brick n°2 – Hollow/perfo	orated brick		With sleeve	With sleeve	With sleeve	
Admissible service load in			0,17			
		mm]		0,03		
Displacement	· · · · ·	[mm]		0,07		

ESSENTIAL CHARACTERISTICS		PERFORMANCE		
Displacement under service load Shear load	(T 24°C)	and 40°C to 180°C (T 5		
Temperature range -40°C/+40°C Brick n°1 – Solid brick	$(1 \text{ mlp} = 24^{\circ} \text{C})$	$\frac{\text{and } -40^{\circ}\text{C to } +80^{\circ}\text{C (1}_{\text{mlp}} = 50)}{\text{M8}}$	M10	M12
Admissible service load in shear	F [kN]		1,71	
Displacement	δ_{V0} [mm]		0,45	
Displacement	$\delta_{V\infty}$ [mm]		0,68	
Brick n°2 – Hollow/perforated br	ick	M8 With sleeve	M10 With sleeve	M12 With sleeve
Admissible service load in shear	F [kN]	with sieeve	1,00	with sieeve
	δ _{v0} [mm]		1,15	
Displacement	$\delta_{V\infty}$ [mm]		1,73	
Table C4: Reaction to fire.				
ESSENTIAL CHARACTERIST	ICS	PERFORMANCE		
Reaction to fire		In the final application the thickness of the mortar layer is about 1 to 2 mm and most of the mortar is material classified class A1 according to EC Decision 96/603/EC. Therefore, it may be assumed that the bonding material (synthetic mortar or a mixture of synthetic mortar and cementitious mortar) in connection with the metal anchor in the end use application do not make any contribution to fire growth or to the fully developed fire and they have no influence to the smoke hazard.		
Table C5: Resistance to fire	e.			
ESSENTIAL CHARACTERISTI	ICS	PERFORMANCE		
ESSENTIAL CHARACTERIST	ICS	PERFORMANCE NPD		
	ICS			

Table C6: Terminology and symbols

TERM	/INOLOGY AND SYMBOLS
d	Diameter of anchor bolt or thread diameter
d ₀	Drill hole diameter
d _{fix}	Diameter of clearance hole in the fixture
h _{ef}	Effective anchorage depth
h1	Depth of the drilling hole
T _{inst}	Torque moment to installation
t _{fix}	Thickness to be fixed
Smin	Minimum allowable spacing
Cmin	Minimum allowable edge distance
N _{Rk}	Characteristic tensile resistance for single anchor
V _{Rk}	Characteristic shear resistance for single anchor
γMm	Partial safety factors
S _{cr,N}	Spacing for ensuring the transmission of the characteristic tensile resistance of a single anchor without spacing and edge effects
C _{cr,N}	Edge distance for ensuring the transmission of the characteristic tensile resistance of a single anchor without spacing and edge effects
β	Factor according to EOTA TR 053
F	Service load
δ0	Short term displacement under service load
δ_∞	Long term displacement under service load
NPD	No performance declared

RESINE SOC

Terminology and symbols

Annex C5 of European Technical Assessment ETA-18/0137